
Converging on the Optimal Attainment of Requirements

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr

Pasadena CA 91109-8099
Martin.S.Feather@Jpl.Nasa.Gov

Tim Menzies
Lane Department of Computer Science &

Electrical Engineering,
West Virginia University

PO Box 6109, Morgantown, WV 26506-6109
tim@menzies.com

Abstract

Planning for the optimal attainment of requirements is
an important early lifecycle activity. However, such
planning is difficult when dealing with competing
requirements, limited resources, and the incompleteness of
information available at requirements time.

A novel approach to requirements optimization is
described. A requirements interaction model is executed to
randomly sample the space of options. This produces a
large amount of data, which is then condensed by a
summarization tool. The result is a small list of critical
decisions (i.e., those most influential in leading towards
the desired optimum). This focuses human experts’
attention on a relatively few decisions and makes them
aware of major alternatives.

This approach is iterative. Each iteration allows
experts to select from among the major alternatives. In
successive iterations the execution and summarization
modules are run again, but each time further constrained
by the decisions made in previous iteration. In the case
study shown here, out of 99 yes/no decisions
(approximately 1030 possibilities), five iterations were
sufficient to find and make the 30 key ones.

1. Introduction

Projects that seek to develop complex systems are
almost always constrained by limited resources. Resources
include development resources (e.g., schedule, budgets,
availability of personnel) and product resources (e.g.,
memory, bandwidth, power). These constraints usually
mean that only a subset of all the desired requirements can
be attained. Competitive pressures drive projects to seek
optimality goals within this constrained space – i.e. to find
the most requirements for a given set of resources, the
least resources to attain a given set of requirements, or
some combination of these goals.

The importance of this issue has been recognized and
studied by the requirements community in recent years.
For example:
• Karlsson & Ryan developed a “cost-value” approach

to prioritizing requirements [7]. At the heart of their
approach is a cost-value diagram, which plots each
requirement’s relative value and implementation cost,

facilitating the selection of an appropriate subset of
requirements. They employ the Analytic Hierarchy
Process to arrive at the relative value and cost figures
for each requirement

• The WinWin project [1] supports multiple
stakeholders to identify conflicts between their
respective evaluations of requirements, and to locate
feasible solutions that are mutually satisfactory
combinations of requirements. A recent experience
report [6] indicates that the automated aids they have
built to support this approach are successful at
identifying more issues and options than would be
possible by a manual treatment alone.

• Influence diagrams (a form of Bayesian nets) are used
in [2] to compute the utility of requirements that are
candidates for inclusion in the next release of a piece
of software. This enables decision makers to take into
account a wide variety of factors contributing to the
feasibility of including each requirement.

The approaches cited above essentially assign or
calculate cost and benefit figures for individual
requirements. The situation becomes more complex if
there are significant interactions among requirements, for
example, if two requirements can be achieved by sharing
the same solutions to sub-problems then the cost of
attaining both of them may be significantly less than the
sum of their individual costs. Representing and reasoning
about requirements interaction is another emergent theme
within the requirements engineering community.
Robinson et al’s survey [16] terms this “Requirements
Interaction Management”, while van Lamsweerde’s mini-
tutorial [18] refers to “Goal-Oriented Requirements
Engineering”. Work in this area is founded upon building
models of how requirements interrelate – how they
decompose, how they are implemented, how they support
or contradict one another, etc.

Combining these two themes suggests the following
approach:

Navigate through alternatives in the cost-
benefit tradeoff space, where the cost-benefit
figures for the various alternatives are derived
from requirements interaction models.

This paper describes tools to support such navigation. The
distinguishing features of our approach are the type and
size of the models we explore. The methods cited above

© 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE. To appear in Proceedings, IEEE Joint International Conference on Requirements Engineering, Essen,
Germany, 9-13 September 2002. IEEE Computer Society.

apply to specific kinds of models and require specialized
tool support. Also, they typically are applied to small
models1. In contrast, this paper explores an approach
suited to the exploration of large models of any type. For
example, in the case study shown below, some 99 risk
mitigation actions were being debated; i.e. 299 ≈1030
possible sets of decisions. Further, our exploration tools
impose minimal restrictions on the type of model being
explored. We just assume that there exists an executable
requirements interaction model and a summarization tool.
The former can be of any form, as long as it can be used to
generate cost and benefit figures from some model of how
requirements interact. The latter is used to extract
summary conclusions from multiple examples of
decisions, each with its cost and benefit figures. These
summary conclusions guide the human experts to focus on
the relatively few critical decision alternatives, and select
accordingly. As they do so, they can bring to bear
additional knowledge that they might not have included
within the requirements interaction model (e.g.,
knowledge of incompatibilities between certain decisions)
to help them make their selection.

Our approach is to follow the iterative cycle of
execution, summarization and decision shown in Figure 1.
The requirements interaction model, built by humans, is
used to grow the space of options, the computer culls the
less useful of these, and the experts make the final
decisions. This can be a fruitful partnership. Focusing
experts attention on the relatively small number of most

critical decision alternatives makes much more effective
use of their skill and knowledge. Repeating this cycle

1 For example, the reported case studies of the soft goal
approach of Mylopoulos and Chung [14, 3] explore a
small number of major alternatives; e.g., between one of
four major architectural styles for the NFR-Assistant Case
tool itself [17].

allows the iterative approach to the end goal of a decision
that is optimal (or near optimal) within the space of
feasible decisions.

We demonstrate the feasibility of this approach
instantiated on a non-trivial requirements interaction
model developed and used at NASA. Sections 2 and 3
describe the requirements interaction model and the
summarization tool (respectively) used in our case study.
Section 4 shows how the interaction model can be linked
to the summarization tool. Section 5 presents our large-
scale pilot study that studied a space of 99 possible risk
mitigations. In five iterations of the execution /
summarization / decision cycle we were able to converge
to a desirable region within the cost/benefit space. This is
illustrated in Figure 2 where “Benefit” is a measure of
requirements attainment and “Cost” is sum of the costs of
applying the selected mitigations. Executing the
interaction model on randomly selected mitigations
generates a sampling of the entire space of solutions (the
widely dispersed black points in Figure 2). Executing the
interaction model on the mitigation selection
recommended by our iterative process generates a
sampling of the optimized space of solutions (the dense
region of white points in Figure 2). The external validity
and applicability of this result is discussed in Section 6.

2. DDP: a requirements interaction model

This section introduces the requirements interaction
model. We describe the modeling framework, and then the
characteristics of a real-world model built within this
framework that we used for our large-scale pilot study.

Our requirements interaction modeling framework is
the NASA-developed Defect Detection and Prevention
(DDP) process and tool for risk assessment, planning and
management [4]. DDP deals with requirements, risks and
risk mitigations. Risks are quantitatively related to

Requirements
Interaction
Model

Summarization
Tool

examples

…

1. P = Yes
2. Q = Yes
3. R = No

critical
decision
alternatives

Human Experts

critical
decision
selection

iterative
cycle

1. X = No
2. Y = Yes
3. Z = Yes

or

Figure 1. Execution/Summarization/Decision Cycle

Requirements
Interaction
Model

Summarization
Tool

examples

…

1. P = Yes
2. Q = Yes
3. R = No

critical
decision
alternatives

Human Experts

critical
decision
selection

iterative
cycle

1. X = No
2. Y = Yes
3. Z = Yes

or

Figure 1. Execution/Summarization/Decision Cycle

requirements, to indicate how much each risk, should it
occur, impacts each requirement. Mitigations are
quantitatively related to risks, to indicate how effectively
each mitigation, should it be applied, reduces each risk. A
set of mitigations achieves benefits (requirements are met
because the risks that impact them are reduced by the
selected mitigations), but incurs costs (the sum total cost
of performing those mitigations). The main purpose of
DDP is to facilitate the judicious selection of a set of
mitigations, attaining requirements in a cost-effective
manner. DDP has the capability to represent and reason
simultaneously with a multitude of mitigations, and their
effectiveness at reducing multiple risks. In actual usage,
DDP application sessions have dealt with up to 150 each
of requirements, risks and mitigations.

Manual exploration of the space of possible mitigation
alternatives is a daunting challenge. Complications stem
from the interactions within the DDP model – a given risk
may impact multiple requirements, and a given
requirement may be impacted by multiple risks. Likewise,
a given risk may be addressed by multiple mitigations, and
a given mitigation may address multiple risks. A modest
cost mitigation that addresses a serious risk might seem
promising, but if that risk will be adequately addressed by
other mitigations that will need to be chosen anyway
(primarily to address other risks), then the seemingly
promising mitigation may be superfluous. The scale of the
models with which we deal compounds the difficulty of
manual exploration. For example, if there were 100
mitigations to choose from, the number of possible
selections would be 2100 (approximately 1030). Automation
capable of finding optimal, or near-optimal, solutions is
needed. In actual DDP applications (to hardware,
software, and hardware-software combinations) the lack of
any such automated capability has forced human users to
manually pick their suite of risk mitigations. Various
graphical presentations of information, automatically
computed cost and risk figures, etc., guide them as they do
so [5], but it has remained a primarily manual activity.
This has several obvious drawbacks – manual selection
takes time, and may well fail to find anything near an
optimal solution.

For our pilot study, we used a real-world model
developed in the DDP framework. We describe its salient
characteristics next.

Domain: the study that gave rise to this data was an
evaluation of a promising piece of research-quality
spacecraft technology. The purpose of the evaluation was
to identify the risks that would arise in maturing this
technology to flight readiness, and what mitigations could
be identified to address those risks in a cost-effective
manner. The proprietary nature of the technology
precludes discussion of the specifics, which are in any
case irrelevant to the focus of this paper.

Scale: NASA experts used DDP to build a network

connecting 32 requirements, 69 risks and 99 mitigations.
The network contains numerous interaction details: 352
times, the experts commented on how mitigations could
reduce risks; 440 times on how risk could damage
requirements.

Raw “Benefit” Data: the data that populated the DDP
model was the combination of inputs from multiple
experts – mission scientists who understood the science
requirements driving the need for the technology (e.g.,
performance metrics), spacecraft engineers who
understood the context in which the technology would
have to function (e.g., temperature, radiation), subsystem
engineers who understood the challenges of matching the
novel technology with the various other spacecraft
components (e.g., power supply).

Raw “Cost” Data: At the time of the model
construction, the group of experts did not assign cost
figures to the individual mitigations. They performed their
study using DDP to compute the “benefit” side of the
equation (i.e., selected mitigations that would reduce risks
and thereby lead to attainment of the requirements), and
mentally kept track of the cost implications of mitigation
selections. In part this was due to the lack of capabilities
in DDP at that time to make use of costs. An expert
knowledgeable of the expense of the various mitigations
added cost figures later. It is this augmented dataset that
we used for the collaborative study.

3. TAR2 treatment learning: a
summarization tool

Classical machine learning (e.g. C4.5 [15]) can be
applied to learn implications between attribute ranges and
results (e.g.):

X>1 and Y<0 implies class=highCostProject
However, if applied to a non-trivial requirements

interaction model a large number of such implications
result. Some form of summarization is required. One way
to do this is to study pairs of rules that lead to different
results and reporting the changes to attribute ranges that
change (e.g.) a highCostProject into a
lowCostProject. TARZAN implemented such a search
as a post-processor to C4.5 [10]. TAR2 performs the same
search directly, without needing C4.5 [11]. Starting with
examples, TAR2 finds range settings that are highly
associated with some “good” outcome (e.g
lowCostProject.) and not highly associated with some
“bad” outcome (e.g. highCostProject). TAR2 outputs
implications of the form (e.g.)

X>1 and Y<0 implies less “bad” and more
“good”
where “less” and “more” are measures of the change in the
frequency of “good” and “bad” before and after applying
X>1 and Y<0 to the examples. The set of attribute
ranges (X>1 and Y<0) is called a “treatment”. Such
treatments are the constraints that TAR2 is proposing on

future actions in order to increase the chances of less
“bad” and more “good”.

TAR2 runs in two passes. In the first pass, a set of
promising attribute ranges is discovered. To find such a
“promising range”, the association and negative
association with “good”/ “bad” behavior (respectively) is
computed for all ranges. A promising range scores
outstandingly high on this scale (for more details, see
[11]). In the second pass, all subsets of these promising
attribute ranges are tested. Clearly, the second pass is
exponential on the number of outstandingly promising
ranges. In practice (e.g. the case study discussed below),
the number of such outstandingly promising ranges is
small enough to be tractable.

This method has demonstrated its utility in a number of
widely differing domains, including the COCOMO risk
model [10], and CMM level 2 [12]. In those case studies,
the summarizations offered by TAR2 were surprisingly
succinct. TAR2 could explore megabytes of data to return
a single rule describing the least action that most changes
the frequency of “good” and “bad” outcomes.

4. Combining the requirements interaction
model with the summarization tool

A requirements interaction model constructed within
DDP takes as input a set of decisions – the selection of
risk mitigations to perform. It computes the cost and
benefit – cost is the cost of performing the selected risk
mitigations, and benefit is the sum total of requirements
attained.

TAR2, the summarization tool, takes as input a set of
examples, each of which comprises a set of attribute
values and an overall score. Attribute values must be
drawn from finite, enumerable ranges (e.g., 1,2,3,4), as
must scores. Furthermore, the possible values for score
must be ordered. It outputs a set of alternative critical
decision sets. Each critical decision set comprises ranges
for a subset of the attribute values.

We interface these tools as follows:
• Each DDP mitigation becomes a separate TAR2

attribute, which can take on one of two values: “Y” or
“N”. “Y” corresponds to the mitigation being
performed, “N” otherwise.

• For a given suite of mitigations to be performed, DDP
automatically computes both a cost figure and a
benefit figure. This computation is based on domain
data. These two must be combined into a single score
from an ordered set of possible such scores.

• TAR2 requires a set of examples. To generate such a
set, run DDP repeatedly, each time randomly selecting
mitigations to perform. In order to reach stable
conclusions over large numbers of attributes, it may be
necessary to generate a fairly large set of examples.

• TAR2, when provided a sufficiently large set of

examples, returns several “treatments” – critical
decision alternatives. Recall that a treatment consists
of a subset of attribute range settings. In DDP terms,
these can be mitigations to perform (TAR2 sets an
attribute to the value “Y”) and mitigations to not
perform (TAR2 sets an attribute to the value “N”).
Intuitively, the ones it recommends to perform are
those essential to achieving a good score, while the
ones it recommends to not perform are those
detrimental to a good score.

• These critical decision alternatives are shown to the
human experts. This gives them the opportunity to
bring to bear additional knowledge that may not be
encoded in the DDP model. For example, they may
recognize an incompatibility between two of the
mitigations that one of the alternatives recommends.
They would therefore choose one of the other
alternatives that TAR2 had recommended. They make
a selection of one of the alternatives.

• The process is repeated, but with the mitigations set
according to the critical decision selection made by the
experts. Each iteration thus sets more and more of the
mitigations, each one to either be performed or not.

5. Pilot study

5.1. First iterative cycle

5.1.1 Generation of examples from requirements
interaction model (DDP). The initial step of the pilot
study involved generating a large number (30,000) of
examples, sufficiently many for TAR2 to work with to
reach stable conclusions. The black points on Figure 2
show the cost/benefit distribution of 10,000 of these
30,000 examples (if all 30,000 are plotted, the area
becomes so densely filled that it is hard to discern the
varying densities of points).

The pilot study needed an optimization target, e.g.,
maximize benefit for a given cost level. In the DDP
model, cost is the dollar cost of performing the selected
mitigations, while benefit is a measure of risk avoidance.
The benefit scale is in arbitrary units of requirements
weighting. The plot of initial values shows that at a cost of
approximately $600,000 there are examples that attain
near-maximal benefit of approximately 250. DDP
applications typically seek near-maximal reduction of risk
(i.e., near maximal benefit). This suggested an interesting
and relevant challenge would be to seek to optimize at or
around the cost limit of $600,000.

5.1.2 Combining cost and benefit values into a
single score. DDP generates numerical cost and benefit
values; TAR2 requires that these be combined to yield a
single score, which can take on values from an
enumerated range.

The target zone of costs at or below $600,000

motivated a partitioning of cost value into four regions:
below $600,000 (most desirable region); $600,000 –
$649,999; $650,000 – $699,999; at or above $700,000
(least desirable region). Benefits were partitioned by
subdividing the data values into quartiles, i.e., putting the
lowest 25% of the benefit figures into the lowest benefit
range, the next 25% into the next, etc. Ranking the 16
possible pairings of cost and benefit then yielded a
combined score of “goodness”. During the pilot study we
employed a mixture of two ways of combining cost and
benefit scores. The first placed a greater priority on
maximizing benefit, as shown in Table 1. Thus an
example whose cost falls into the lowest cost range (i.e.,
up to $600,000) and highest benefit range (top 25
percentile) would achieve the maximum possible score of
16. Next best, a score of 15, would go to examples in the
2nd cost range ($600,000 – $649,999) but still in the top 25
percentile benefit range, … the worst score, 1, is reserved
for an example that falls into the highest cost, lowest
benefit ranges. This ranking drove TAR2 towards high-
benefit solutions.
Table 1 – benefit-prioritized score combination of

cost & benefit
score COST RANGE

1
(low)

2 3 4
(high)

4 (high) 16 15 14 13
3 12 11 10 9
2 8 7 6 5

B
E
N
E
F
IT

R
A
N
G
E

1 (low) 4 3 2 1
The second combination scheme, shown in Table 2,

stuck a more balanced combination of cost and benefit.
Table 2 – balanced score combination of cost &

benefit
score COST RANGE

1
(low)

2 3 4
(high)

4 (high) 16 14 11 7
3 15 12 8 4
2 13 9 5 2

B
E
N
E
F
IT

R
A
N
G
E

1 (low) 10 6 3 1

The initial dataset was processed to assign the
appropriate one of these scores to each of its 30,000
examples, so as to prepare it for TAR2.

5.1.3 Summarization using TAR2 treatment
learning. TAR2 was applied to the processed dataset, and
directed to look for treatment sets of increasingly large
size. 6 was the maximum size for which it successfully
terminated. The best treatment identified three mitigations
to constrain to be performed, and three mitigations to
constrain to not be performed.

To visualize the effect, DDP was then used to generate
another large set of examples, with the mitigations in the

TAR2 treatment constrained as indicated, and the
remaining mitigations selected or not at random. Figures 3
and 4 (next page) show the distribution of the examples
generated in the initial state, and the examples generated
after the first iteration (10,000 examples are plotted for
both cases). The improvements are dramatic – examples
with low benefits (below 150) and/or high costs (over
$900,000) have vanished.

5.2. Successive iterations

In successive iterations, TAR2 was applied to the set of
examples that emerged from executing the model on the
best treatment found in the previous iteration. If this were
a real-life application of the approach, after each of the
iterations the experts would be presented the results so far,
and asked to make their selection from among the multiple
treatment sets proffered by TAR2.

The entire series is shown in Figures 3 through 8, on
the next page. From the treatment sets it discovered, the
best was selected, the model was additionally constrained
by its recommendations, and another large set of examples
generated. The stopping point, after the 5th iteration, is
shown in Figure 8.

5.3. Stopping point

Following the 5th iteration, the variation among the
benefit figures is relatively small. Recall that the
underlying DDP data is human experts’ estimates, and so
the cost and benefit figures that DDP computes from these
should not be misinterpreted to have high precision. Thus
having reached the point where the benefit figures are so
tightly clustered, it is appropriate to stop. A good strategy
at this point is to pick one of the lower cost points along
the upper border.

5.4. Sensitivity

Our requirements interaction model was populated with
experts’ estimates of the impact of risks on requirements,
and effectiveness of mitigations at inhibiting risks. This
has been the norm for DDP applications, targeted at
problems for which historical data has rarely been
available [4]. A question that often arises is to what extent
the results suggested by DDP depend on the correctness of
the experts’ estimates. The availability of the TAR2
treatment learner gives us a way to study this issue.

We picked one of the near-optimal solutions that
emerged from the iterations described above. This
consisted of a set of mitigations to be applied. We then
applied the same execution/summarization process upon
this solution, but instead of varying which mitigations
were selected for application while holding the model
constant, we varied the model while holding the selection
of mitigations constant. Each such experiment yielded a
pair cost and benefit figures, but the cost figure remained
constant (namely the sum total of the costs of the selected

mitigations). The effects of varying the model showed up
as changes to the computed benefit.

We generated 100,000 such randomly generated model
variations, and fed these into TAR2 to search for model
values (i.e., experts’ estimates) that would lead to the
greatest divergence from the originally computed benefit
figure. TAR2 was unable to find any that made a
significant difference. Based on TAR2’s success in a
number of domains, we are confident that critical settings
must not exist, otherwise TAR2 would have found them.
This strongly suggests that the recommendations found by
our iterative process are not overly sensitive to variations
in the experts’ options contained within the model. That is,
the recommendations would seem to be based on the
aggregate effect of a large number of estimates, rather
than critically dependant upon just a small subset of them.

6. Discussion

We have described a novel iterative process of
execution, summarization and decision, the purpose of
which is to converge towards near-optimal attainment of
requirements in large-scale requirements models.

We claim to have demonstrated its success in our pilot
study of a real-world instance of a requirements
interaction model. In this section we defend this claim,
and consider its broader implications, in particular, its
applicability to other models.

6.1. Success on pilot study

The key claim we are making about the pilot study is
that it showed success at arriving at a near-optimal
attainment of requirements.

Without a baseline system to compare with, this claim
cannot be rigorously defended. However, consider how
the space of cost-benefits shrank as we iteratively applied
TAR2. After five iterations, TAR2 had succeeded in
identifying settings that demonstrably yield a compact set
of points concentrated at the upper end of the benefit
range, and at cost levels compatible with our initial goal of
$600,000. Indeed, the experiments revealed that almost as
much benefit can be attained at somewhat lower costs,
around the $500,000 level. It is interesting to note that the
combination of the treatments discovered by the five
rounds of TAR2 constrained only one-third of the
mitigations (30 out of 99), and yet these serve to narrow
the spread of cost/benefit values significantly. The
randomly generated mitigation suites at the start had
benefits & costs dispersed widely across the 50 – 260 &
$300,000 – $1,200,000 ranges. The stopping point has
benefits & costs concentrated predominantly within the
240 – 265 & $450,000 – $650,000 ranges.

We are further encouraged by the sensitivity
experiment, which indicated the near optimal solutions
were robust with respect to the model inputs.

6.2. Novelty of the approach

The approach offers a way to converge to near-optimal
attainment of requirements in large-scale requirements
models. Furthermore, it identifies critical decision points
along the way, giving human experts the opportunity to
inject additional knowledge and guidance.

Potential alternative methods to our approach include
traditional numeric optimization methods (e.g., linear
programming) or computational intelligence methods
(e.g., fuzzy logic, genetic algorithms, neural nets).
However, numerical optimization cannot be applied here
since DDP theories are discrete, not continuous. Numeric
optimization is better suited to continuous theories
containing smooth functions. Numeric methods are
unsuited to discrete theories containing sudden “cliffs”
(e.g. when a mitigation is activated).

Preliminary studies with a heuristic search technique
based on use of genetic algorithms indicate it may provide
a fast way of arriving at near-optimal solutions. However,
each such solution takes the form of apply/don’t apply
decisions for every mitigation, from which there is no
apparent way to ascertain which of these are the most
critical decisions. They drawbacks are lack of opportunity
for experts to inject their additional knowledge into the
process, and lack of focus on the critical decision points.

6.3. Wider applicability

We believe our iterative process to have applicability to
a wide range of requirements interaction models. Our
process requires that:
1. The requirements interaction model be

“executable”, that is, can be randomly exercised to
generate a set of examples, for each of which the
model computes the measures of interest.

2. Those measures be combinable into a single
measure that can take on values in a discrete,
ordered range.

3. Summarization be capable of finding critical
settings that lead towards the more desirable end of
the ordered range.

In our case, it was easy to arrange to have DDP
generate large numbers of examples, the only drawback
being the time it took DDP to do so. At present, the DDP
implementation on the large-scale pilot study’s dataset
takes on the order of 3 hours to generate a set of 10,000
examples (running on a 1GHz machine with 1Gigabyte of
RAM). The vast majority of the time goes into calculating
the cost and benefit figures. One way around this would be
to employ parallel processing, setting multiple CPUs the
task of constructing examples by randomly selecting
mitigations, and computing the cost and benefit figures for
each example. We showed a simple scheme for abstracting
them into ranges from which a single composite measure
could be derived. These are easy steps for a wide range of

models.
Note that the summarization component needs only

examples generated by the requirements model, not an
understanding of the model itself. Thus as the formalism
used to capture requirements interaction models evolves,
no change to the summarization component is required.
We have been elaborating the DDP model, and so will be
able to take advantage of this. It also means that the
overall approach should work even if very different
requirements interaction models are substituted.

We employed TAR2 for summarization. Given the lack
of apparent alternatives, our belief in the wider
applicability of this approach thus hinges on our belief in
the wider applicability of TAR2. We address two areas of
particular concern with this:
Is random generation of examples an adequate method
for exploring a model? A theoretical drawback with any
random search strategy is that such random exploration
can miss significant parts of the space of options. A huge
body of work testifies to the merits of random search, even
for very hard tasks such as searching an argument space.
For example, random search methods are very effective
for scheduling problems and can solve hard and larger
planning problems many times faster than traditional
methods such as a systematic Davis-Putnam procedure
[8]. A similar result was offered in [9] (this result is
discussed below). That is, a random selection of
mitigation strategies can be an adequate method for
exploring an argument space.

Will the techniques described here scale to larger
models? Our technique relies heavily on the TAR2
treatment leaner. Hence, our method won’t scale unless
TAR2 also scales. Recall from section 3 that the algorithm
explores all subsets of the “outstandingly promising
attribute ranges”; i.e. those ranges that have most impact
on changing the behavior of a system. Unless we can
guarantee that the number of outstanding ranges is small,
then this exponential search is intractable and our methods
won’t scale. The “funnel theory” of [9] strongly suggests
that only a small number of outstanding ranges will exist.
The original funnel study tested relative effectiveness of
exploring all/some resolutions to all/some arguments
(where the “some” where randomly selected). In millions
of runs, they observed a “funnel effect”; i.e. in most
arguments, there exists a small set of key decisions that
control all other decisions. [13] argued for the theoretical
external validity of the funnel effect. They explored how
random search might select between small funnels and
large funnels. Based on known distributions of reaching
part of a software system, they concluded that a random
search is millions of times more likely to use small
funnels. In systems with small funnels, a small number of
decisions would be used frequently (i.e. those in the
funnel). Those decisions would appear as outstandingly
promising ranges, of which there would be only a few, and

hence TAR2’s exponential search would be tractable.

7. Conclusions

We have described a novel approach to converging
upon near-optimal attainment of requirements in large-
scale requirements models. It converges iteratively, at
each stage identifying candidate sets of the most critical
decisions that lead towards near-optimal solutions. This
allows experts to inject their additional knowledge when
selecting the decision set to use. In addition, this approach
can also be used to investigate the sensitivity of the
solution with respect to the requirements model’s data.

We conducted a pilot study to investigate this
approach. For this study we used a real-world
requirements model of considerable size. The positive
results of this study, together with our arguments for its
wider applicability, suggest that this approach is worthy of
further investigation. Now that we have this capability in
place, we plan to make use of it to assist in future
applications of our requirements modeling process. We
also hope that this will stimulate additional interest in the
use of this overall approach.

8. Acknowledgements

The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration, and at the
University of British Columbia, Vancouver, Canada.

Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply
its endorsement by the United States Government or the
Jet Propulsion Laboratory, California Institute of
Technology.

Burton Sigal (JPL), John Kelly (JPL), Martha
Wetherholt (NASA HQ), Tim Kurtz (NASA Glenn), Ken
McGill (NASA IV&V) and Peter In (Texas A&M) have
had a major and positive influence on this work. Steve
Cornford (JPL) leads the entire DDP effort; he together
with Julia Dunphy (JPL) and Jose Salcedo (JPL) have
been studying the application of genetic algorithms as a
way to locate near-optimal mitigation suites; their insights
and contributions are gratefully acknowledged.

9. References

[1] B. Boehm, P. Bose, E. Horowitz & M. Lee. “Software
Requirements as Negotiated Win Conditions”, Proceedings 1st

International Conference on Requirements Engineering,
Colorado Springs, Colorado, 1994, pp 74-83.

[2] C.J. Burgess, I. Dattani, G. Hughes, J.H.R., May & K. Rees,
“Using Influence Diagrams to Aid the Management of Software
Change”, Requirements Engineering 6(3), Oct 2001, pp 173-182.

[3] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-

Functional Requirements in Software Engineering, Kluwer
Academic Publishers, Boston, Oct 1999.

[4] S.L. Cornford, M.S. Feather & K.A. Hicks. “DDP – A tool
for life-cycle risk management”, IEEE Aerospace Conference,
Big Sky, Montana, Mar 2001, pp 441-451.

[5] M.S. Feather, S.L. Cornford, M. Gibbel. “Scalable
Mechanisms for Requirements Interaction Management”,
Proceedings 4th IEEE International Conference on
Requirements Engineering, Schaumburg, Illinois, 19-23 Jun
2000, IEEE Computer Society, pp 119-129

[6] H. In, B. Boehm, T. Rodgers & M. Deutsch. “Applying
WinWin to Quality Requirements: A Case Study”, Proceedings
23rd International Conference on Software Engineering,
Toronto, Ont., Canada, May 2001, pp 555-564.

[7] J. Karlsson & K. Ryan. “A Cost-Value Approach for
Prioritizing Requirements”, IEEE Software, Sept./Oct. 1997, pp
67-74.

[8], H. Kautz and B. Selman, Pushing the Envelope: Planning,
Propositional Logic and Stochastic Search, AAAI 96, pp 1194-
1201.

[9] T. Menzies, S. Easterbrook, B. Nuseibeh and S. Waugh. “An
Empirical Investigation of Multiple Viewpoint Reasoning in
Requirements Engineering”, Proceedings 4th IEEE International
Symposium on Requirements Engineering, 1999.

[10] T.J. Menzies and E. Sinsel. “Practical Large Scale What-if
Queries: Case Studies with Software Risk Assessment”,
Proceedings 15th IEEE International Conference on Automated
Software Engineering, Grenoble, France, Sept 2000, pp 165-173.

[11] T. Menzies & Y. Hu. “Constraining Discussions in
Requirements Engineering via Models”, 1st International
Workshop on Model Based Requirements Engineering, San
Diego, California, Dec 2001.

[12] T. Menzies and J.D. Kiper. “Better reasoning about
software engineering activities”, Proceedings 16th International
Conference on Automated Software Engineering, San Diego,
California, Nov 2001, pp 391-394.

[13] T. Menzies and H. Singh. “Many Maybes Mean (Mostly)
the Same Thing”, 2nd International Workshop on Soft
Computing applied to Software Engineering (Netherlands), Feb,
2001.

[14] J. Mylopoulos, L. Chung, S. Liao, H. Wang & E. Yu.
“Exploring Alternatives during Requirements Analysis”, IEEE
Software 18(1), Jan-Feb 2001, pp 92-96.

[15] R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufman, 1992.

[16] W.N. Robinson., S. Pawlowski & S. Volkov. “Requirements
Interaction Management”, GSU CIS Working Paper 99-7,
Georgia State University, Atlanta, GA, August, 30, 1999.

[17] A. Tran & L. Chung. “NFR-Assistant: Tool Support for
Achieving Quality”, Proceedings Application-Specific Systems
and Software Engineering Technology, Richardson, Texas,
March 1999, pp 24-27.

[18] A. van Lamsweerde. “Goal-Oriented Requirements
Engineering: A Guided Tour”, Proceedings 5th IEEE
International Symposium on Requirements Engineering,
Toronto, Canada, August 2001, pp 249-263.

